(1)求
(2)已知,求n.
已知平面内两点(-1,1),
(1,3).
(Ⅰ)求过两点的直线方程;
(Ⅱ)求过两点且圆心在
轴上的圆的方程.
已知是椭圆E:
的两个焦点,抛物线
的焦点为椭圆E的一个焦点,直线y=
上到焦点F1,F2距离之和最小的点P恰好在椭圆E上,
(Ⅰ)求椭圆E的方程;
(Ⅱ)如图,过点的动直线
交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由。
已知P()为函数
图像上一点,O为坐标原点,记直线OP的斜率
。
(Ⅰ)求函数的单调区间;
(Ⅱ)设,求函数
的最小值。
正项数列的前n项和为
,且
。
(Ⅰ)证明数列为等差数列并求其通项公式;
(2)设,数列
的前n项和为
,证明:
。
为了解某市市民对政府出台楼市限购令的态度,在该市随机抽取了50名市民进行调查,他们月收入(单位:百元)的频数分布及对楼市限购令的赞成人数如下表:
月收入 |
![]() |
[25,35) |
[35,45) |
![]() |
![]() |
![]() |
频数 |
5 |
10 |
15 |
10 |
5 |
5 |
赞成人数 |
4 |
8 |
8 |
5 |
2 |
1 |
将月收入不低于55的人群称为“高收入族”,月收入低于55的人群称为“非高收人族”。
(Ⅰ)根据已知条件完成下面的2×2列联表,有多大的把握认为赞不赞成楼市限购令与收入高低有关?
已知:,
当<2.706时,没有充分的证据判定赞不赞成楼市限购令与收入高低有关;
当>2.706时,有90%的把握判定赞不赞成楼市限购令与收入高低有关;
当>3.841时,有95%的把握判定赞不赞成楼市限购令与收入高低有关;
当>6.635时,有99%的把握判定赞不赞成楼市限购令与收入高低有关。
非高收入族 |
高收入族 |
总计 |
|
赞成 |
|||
不赞成 |
|||
总计 |
(Ⅱ)现从月收入在[55,65)的人群中随机抽取两人,求所抽取的两人中至少一人赞成楼市限购令的概率。