某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交3元的管理费,预计当每件产品的售价为元(
∈[7,11])时,一年的销售量为
万件.
(1)求分公司一年的利润(万元)与每件产品的售价
的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润最大,并求出
的最大值.
设函数.
(1) 试根据函数的图象平移
的图象,并写出交换过程;
(2) 的图象是中心对称图形吗?
(3) 指出的单调区间
如图,是
的三条高,求证:
相交于一点.
已知分别是椭圆
的左右焦点,其左准线与
轴相交于点N,并且满足
,设A、B是上半椭圆上满足
的两点,其中
.(1)求此椭圆的方程;(2)求直线AB的斜率的取值范围.
已知函数(1)求
在区间
上的最大值
;(2)若方程
有且只有三个不同的实根,求实数
的取值范围.
平面直角坐标系中,为坐标原点,给定两点
,点
满足
,其中
,且
.(1)求点
的轨迹方程;(2)设点
的轨迹与双曲线
交于
两点,且以
为直径的圆过原点,求证:
为定值;(3)在(2)的条件下,若双曲线的离心率不大于
,求双曲线实轴长的取值范围.