某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交3元的管理费,预计当每件产品的售价为元(
∈[7,11])时,一年的销售量为
万件.
(1)求分公司一年的利润(万元)与每件产品的售价
的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润最大,并求出
的最大值.
如图,已知圆,经过椭圆
的右焦点F及上顶点B,过圆外一点
倾斜角为
的直线
交椭圆于C,D两点,
(Ⅰ)求椭圆的方程;
(Ⅱ)若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.
C如图,将边长为2的正方形ABCD沿对角线BD 折成一个直二面角,且EA⊥平面ABD,AE=,
(Ⅰ)若,求证:AB∥平面CDE;
(Ⅱ)求实数的值,使得二面角A-EC-D的大小为60°.
已知是定义在区间
上的奇函数,且
,若
,
时,有
.
(1)判断的单调性,并证明;
(2)若对所有
,
恒成立,求实数t的取值范围.
已知向量,
,
.
(Ⅰ)求函数的单调递减区间;
(Ⅱ)在中,
分别是角
的对边,
,
,
若,求
的大小.
已知函数.
(1)判断函数的奇偶性,并证明你的结论;
(2)求证:是R上的增函数;
(3)若,求
的取值范围.(参考公式:
)