如图,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.(1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;(2)求证:无论点E在BC边的何处,都有;(3)当为何值时,与平面所成角的大小为45°.
已知集合,. (1)存在,使得,求的取值范围; (2)若,求的取值范围.
(1)设,求的值; (2)已知,且,求的值.
已知函数. (1)求不等式的解集; (2)若关于的不等式在上恒成立,求实数的取值范围.
在直角坐标系中,曲线的参数方程为(为参数),若以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标,曲线的极坐标方程为(其中为常数). (1)若曲线与曲线只有一个公共点,求的取值范围; (2)当时,求曲线上的点与曲线上的点的最小距离.
如图,在中,是的角平分线,的外接圆交于,. (1)求证:; (2)当时,求的长.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号