如图,在三棱柱ABC-A1B1C1中, CC1⊥底面ABC,AC=BC,M,N分别是CC1,AB的中点.
(1)求证:CN⊥AB1;
(2)求证:CN//平面AB1M.
已知函数对任意的
恒有
成立.
(1)当b=0时,记若
在
)上为增函数,求c的取值范围;
(2)证明:当时,
成立;
(3)若对满足条件的任意实数b,c,不等式恒成立,求M的最小值.
已知数列的前n项的和为
,且
,
(1)证明数列是等比数列
(2)求通项与前n项的和
;
(3)设若集合M=
恰有4个元素,求实数
的取值范围.
已知圆的圆心在坐标原点O,且恰好与直线
相切.
(1)求圆的标准方程;
(2)设点A为圆上一动点,AN轴于N,若动点Q满足
(其中m为非零常数),试求动点
的轨迹方程
.
(3)在(2)的结论下,当时,得到动点Q的轨迹曲线C,与
垂直的直线
与曲线C交于 B、D两点,求
面积的最大值.
在中,角A、B、C的对边分别为a、b、c,S是该三角形的面积
(1)若,
求角B的度数
(2)若a=8,B=,S=
,求b的值
(1)解方程:
(2)已知命题命题
且命题
是
的必要条件,求实数m的取值范围