中心在坐标原点,焦点在轴上的椭圆的离心率为
,且经过点
。若分别过椭圆的左右焦点
、
的动直线
、
相交于P点,与椭圆分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率
、
、
、
满足
.
(1)求椭圆的方程;
(2)是否存在定点M、N,使得为定值.若存在,求出M、N点坐标;若不存在,说明理由.
(本小题满分12分)
某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.
![]() |
视觉记忆能力 |
||||
偏低 |
中等 |
偏高 |
超常 |
||
听觉 记忆 能力 |
偏低 |
0 |
7 |
5 |
1 |
中等 |
1 |
8 |
3 |
![]() |
|
偏高 |
2 |
![]() |
0 |
1 |
|
超常 |
0 |
2 |
1 |
1 |
由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为.
(1)试确定、
的值;
(2)从40人中任意抽取3人,求其中至少有一位具有听觉记忆能力或视觉记忆能力超常的学生的概率;
(3)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为,求随机变量
的数学期望
.
(本小题满分12分)
如图2,渔船甲位于岛屿的南偏西
方向的
处,且与岛屿
相距12海里,渔船乙以10海里/小时的速度从岛屿
出发沿正北方向航行,若渔船甲同时从
处出发沿北偏东
的方向追赶渔船乙,刚好用2小时追上.
(1)求渔船甲的速度;
(2)求的值.
设函数处的切线与直线
平行.
(1)求的值;
(2)求函数在区间[0,1]的最小值;
(3)若,根据上述(I)
、(II)的结论,证明:
(1)已知是正常数,
,
,求证:
,指出等号成立的条件;
(2)利用(1)的结论求函数(
)的最小值,并指出取最小值时
的值.
某地政府为科技兴市,欲将如图所示的一块不规则的非农业用地规划建成一个矩形的高科技工业园区.已知⊥
,
∥
,且
,
,
曲线段
是以点
为顶
点且开口向上的抛物线的一段.如果要使矩形的相邻两边分别落
在,
上,且一个顶点落在曲线段
上.问:应如何规划才能使矩形工业园区的用地面积最大?并求出最大的用地面积(精确到
).