中心在坐标原点,焦点在轴上的椭圆的离心率为
,且经过点
。若分别过椭圆的左右焦点
、
的动直线
、
相交于P点,与椭圆分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率
、
、
、
满足
.
(1)求椭圆的方程;
(2)是否存在定点M、N,使得为定值.若存在,求出M、N点坐标;若不存在,说明理由.
已知数列的前
项和为
,且
.数列
为等比数列,且
,
.
(1)求数列,
的通项公式;
(2)若数列满足
,求数列
的前
项和
.
某班共有学生40人,将一次数学考试成绩(单位:分)绘制成频率分布直方图,如图所示。
(1)请根据图中所给数据,求出的值;
(2)从成绩在[50,70)内的学生中随机选3名学生,求这3名学生的成绩都在[60,70)内的概率;
(3)为了了解学生本次考试的失分情况,从成绩在[50,70)内的学生中随机选取3人的成绩进行分析,用X表示所选学生成绩在[ 60,70)内的人数,求X的分布列和数学期望.
已知函数.
(1)若,求
的最大值及此时相应的
的值;
(2)在△ABC中,、b、c分别为角A、B、C的对边,若
,b =l,
,求
的值.
已知向量。
(1)若,求
及
;
(2)若,求
。
已知函数,
.
(1)如果函数在
上是单调减函数,求
的取值范围;
(2)是否存在实数,使得方程
在区间
内有且只有两个不相等的实数根?若存在,请求出
的取值范围;若不存在,请说明理由.