游客
题文

哈尔滨市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为

 
优秀
非优秀
合计
甲班
10
 
 
乙班
 
30
 
    合计
 
 
110

(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。
参考公式与临界值表:


0.100
0.050
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828
科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

如图,已知椭圆的长轴为AB,过点B的直线
轴垂直,椭圆的离心率,F为椭圆的左焦点,且

(1)求此椭圆的标准方程;
(2)设P是此椭圆上异于A,B的任意一点, 轴,H为垂足,延长HP到点Q,使得HP=PQ,连接AQ并延长交直线于点,的中点,判定直线与以为直径的圆O位置关系。

某地区注重生态环境建设,每年用于改造生态环境总费用为亿元,其中用于风景区改造为亿元。该市决定制定生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年改造生态环境总费用至少亿元,至多亿元;③每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%.
,请你分析能否采用函数模型y=作为生态环境改造投资方案.

在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.

(1)求证:BD⊥PC;
(2)设E为PC的中点,点F在线段AB上,若直线EF∥平面PAD,求AF的长;
(3)求二面角A﹣PC﹣B的余弦值.

已知a,b,c分别是的三个内角A,B,C的对边,
(1)求A的大小;
(2)当时,求的取值范围.

已知等差数列中,公差,其前项和为,且满足:
(1)求数列的通项公式;
(2)令,求的最小值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号