哈尔滨市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为
。
|
优秀 |
非优秀 |
合计 |
甲班 |
10 |
|
|
乙班 |
|
30 |
|
合计 |
|
|
110 |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。
参考公式与临界值表:。
![]() |
0.100 |
0.050 |
0.025 |
0.010 |
0.001 |
![]() |
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |
(本小题满分12分)
已知是公差不为零的等差数列,
成等比数列.
(1)求数列的通项; (2)求数列
的前n项和
设实数满足不等式组
。
作出点
所在的平面区域并求出
的取值范围;
设
,在
所求的区域内,求
的最值。
已知函数,输入自变量的值,输出对应的函数值。
(1)画出算法框图;
(2)写出程序语句。
某车间为了规定工时定额,需要确定加个某零件所花费的时间,为此作了四次实验,得到的数据如下:
零件的个数x(个) |
2 |
3 |
4 |
5 |
加工的时间y(小时) |
2.5 |
3 |
4 |
4.5 |
(1)求出y关于x的线性回归方程;
(2)试预测加工10个零件需要多少时间?
已知实数x、y满足
(1)求不等式组表示的平面区域的面积;
(2)若目标函数为z=x-2y,求z的最小值.