如图,在菱形ABCD中,E为边BC的中点,DE与对角线AC交于点M,过点M作MF⊥CD于点F,∠1=∠2.
求证:(1)DE⊥BC;
(2)AM=DE+MF.
如图所示,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.
如图所示,四边形ABCD的对角线AC,BD相交于点O,△ABC≌△BAD.
求证:(1)OA=OB;(2)AB∥CD.
某车间有甲、乙两条生产线.在甲生产线已生产了200吨成品后,乙生产线开始投入生产,甲、乙两条生产线每天分别生产20吨和30吨成品.
(1)分别求出甲、乙两条生产线各自总产量(吨)与从乙开始投产以来所用时间
(天)之间的函数关系式.
(2)作出上述两个函数在如图所示的直角坐标系中的图象,观察图象,分别指出第10天和第30天结束时,哪条生产线的总产量高?
为保护学生视力,课桌椅的高度都是按一定的关系配套设计的,研究表明:假设课桌的高度为cm,椅子的高度为
cm,则
应是
的一次函数,下表列出两套符合条件的课桌椅的高度:
第一套 |
第二套 |
|
椅子高度![]() |
40 |
37 |
课桌高度![]() |
75 |
70 |
(1)请确定与
的函数关系式.
(2)现有一把高39 cm的椅子和一张高78.2 cm的课桌,它们是否配套?为什么?
已知与
成正比例,且当
时,
.
(1)求与
的函数关系式;
(2)求当时的函数值.