袋中有大小相同的个编号为
、
、
的球,
号球有
个,
号球有
个,
号球有
个.从袋中依次摸出
个球,已知在第一次摸出
号球的前提下,再摸出一个
号球的概率是
.
(Ⅰ)求、
的值;
(Ⅱ)从袋中任意摸出个球,记得到小球的编号数之和为
,求随机变量
的分布列和数学期望
.
某高校共有学生15 000人,其中男生10 500人,女生4 500人,为调查该校学生每周平均体育运动的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).
(1)应收集多少位女生的样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4], (4,6], (6,8], (8,10], (10,12],估计该校学生每周平均体育运动时间超过4小时的概率;
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
附:
P(K2≥k0) |
0.10 |
0.05 |
0.010 |
0.005 |
k0 |
2.706 |
3.841 |
6.635 |
7.879 |
已知幂函数y=f(x)的图象过点(2,),试求出此函数的解析式,并写出其定义域,判断奇偶性,单调性.
已知函数,若函数
恰有4个零点,则实数a的取值范围为.
在自然条件下,某草原上野兔第n年年初的数量记为xn,该年的增长量yn和 xn与的乘积成正比,比例系数为
,其中m是与n无关的常数,且x1<m,
(1)证明:;
(2)用 xn表示xn+1;并证明草原上的野兔总数量恒小于m.
如图所示,n台机器人M1,M2,……,Mn位于一条直线上,检测台M在线段M1 Mn上,n台机器人需把各自生产的零件送交M处进行检测,送检程序设定:当Mi把零件送达M处时,Mi+1即刻自动出发送检(i=1,2,……,n-1)已知Mi的送检速度为V(V>0), 且记
,n台机器人送检时间总和为f(x).
![]() |
(1)求f(x)的表达式;
(2)当n=3时,求x的值使得f(x)取得最小值;
(3)求f(x)取得最小值时,x的取值范围.