如图,⊙O内切△ABC的边于D、E、F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.
⑴证明:圆心O在直线AD上;
⑵证明:点C是线段GD的中点.
如图所示,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2,AB=BC=3.求BD以及AC的长.
如图所示,在△ABC中,AD为BC边上的中线,F为AB
上任意一点,CF交AD于点E.求证:AE·BF=2DE·AF.
如图A.B是单位圆O上的点,且点在第二象限. C是圆O与
轴正半轴的交点,A点的坐标为
,△
为直角三角形.
(1)求;
(2)求的长度
如图,已知空间四边形中,
,
是
的中点.
求证:(1)平面CDE;
(2)平面平面
.
(3)若G为的重心,试在线段AE上确定一点F,使得GF//平面CDE.
设椭圆M:(a>b>0)的离心率为
,长轴长为
,设过右焦点F倾斜角为
的直线交椭圆M于A,B两点。
(Ⅰ)求椭圆M的方程;
(Ⅱ)求证| AB | =;
(Ⅲ)设过右焦点F且与直线AB垂直的直线交椭圆M于C,D,求|AB| + |CD|的最小值。