数列{an}是公比为的等比数列,且1-a2是a1与1+a3的等比中项,前n项和为Sn;数列{bn}是等差数列,b1=8,其前n项和Tn满足Tn=n
·bn+1(
为常数,且
≠1).
(I)求数列{an}的通项公式及的值;
(Ⅱ)比较+
+
++
与了
Sn的大小.
已知函数(
为实常数)
(1)当时,求函数
在
上的最大值及相应的
值;
(2)当时,讨论方程
根的个数
(3)若,且对任意的
,都有
,求实数a的取值范围
已知函数,
(1)判断函数的奇偶性;
(2)求函数的单调区间;
(3)若关于的方程
有实数解,求实数
的取值范围
已知某公司生产品牌服装的年固定成本是10万元,每生产千件,须另投入2 7万元,设该公司年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且
(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获利润最大?(注:年利润=年销售收入 年总成本)
已知函数f(x)=x2 mlnx
(1)若函数f(x)在(,+∞)上是递增的,求实数m的取值范围;
(2)当m=2时,求函数f(x)在[1,e]上的最大值和最小值
已知函数的值域为集合
,关于
的不等式
的解集为
,集合
,集合
(1)若,求实数
的取值范围;
(2)若,求实数
的取值范围。