美国篮球职业联赛(),某赛季的总决赛在洛杉矶湖人队与费城76人队之间角逐,采用七局四胜制,即若有一队胜四场,由此队获胜且比赛结束,因两队实力水平非常接近,在每场比赛中两队获胜是等可能的,据以往资料统计,每场比赛组织者可获门票收入300万美元,两队决出胜负后问:
(1)组织者在此次决赛中获门票收入为1200万美元的概率是多少?
(2)组织者在此次决赛中获门票收入不低于1800万美元的概率是多少?
(本小题满分16分)已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(,0).
(1)求双曲线C的方程;
(2)若直线与双曲线C恒有两个不同的交点A和B,且
(其中
为原点),求
的取值范围。
(本小题满分14分).已知:(
,
为常数).
(1)若,求
的最小正周期;
(2)若,
时,
的最大值为4,求
的值.
(本小题满分12分)如图,在体积为三棱锥
中,
⊥平面
,
且
,求异面直线
与
所成角.
(本小题满分14分)已知函数,其中e为自然对数的底数.
(1)求曲线在点
处的切线方程;
(2)若对任意,不等式
恒成立,求实数m的取值范围;
(3)试探究当时,方程
的解的个数,并说明理由.
(本小题满分13分)已知椭圆,其中
为左、右焦点,且离心率
,直线
与椭圆交于两不同点
.当直线
过椭圆C右焦点F2且倾斜角为
时,原点O到直线
的距离为
.
(1)求椭圆C的方程;
(2)若,当
面积为
时,求
的最大值.