已知函数f(x)=lnx,g(x)=k·.
(I)求函数F(x)= f(x)- g(x)的单调区间;
(Ⅱ)当x>1时,函数f(x)> g(x)恒成立,求实数k的取值范围;
(Ⅲ)设正实数a1,a2,a3,,an满足a1+a2+a3++an=1,
求证:ln(1+)+ln(1+
)++ln(1+
)>
.
如图,在四棱锥P—ABCD中,底面ABCD是边长为4的菱形,且,菱形ABCD的两条对角线的交点为0,PA=PC,PB=PD,且PO=3.点E是线段PA的中点,连接EO、EB、EC.
(I)证明:直线OE//平面PBC;
(II)求二面角E-BC-D的大小
已知ΔABC中,内角A、B、C所对边的长分别是a、b、c,且点在直线x—y=(a—b) sinB上
(I)求角C的大小;
(II)若,且A<B,求
的值.
已知函数在其定义域上满足:
,
①函数的图象是否是中学对称图形?若是,请指出其对称中心(不证明)
②当时,求
的取值范围
③若,数列
满足
,那么若
正整数N满足n>N时,对所有适合上述条件的数列
,
恒成立,求最小的N。
1)在平面直角坐标系中,已知某点,直线
.求证:点P到直线
的距离
2)已知抛物线C: 的焦点为F,点P(2,0),O为坐标原点,过P的直线
与抛物线C相交于A,B两点,若向量
在向量
上的投影为n,且
,求直线
的方程。
已知数列是公差为1的等差数列,
是公比为2的等比数列,
分别是数列
和
前n项和,且
①分别求,
的通项公式。
②若,求n的范围
③令,求数列
的前n项和
。