如图,在正四棱锥中,底面是边长为2的正方形,侧棱
,
为
的中点,
是侧棱
上的一动点。
(1)证明:;
(2)当直线时,求三棱锥
的体积.
已知是实数,
是抛物线
的焦点,直线
.
(1)若
,且
在直线
上,求抛物线
的方程;
(2)当时,设直线
与抛物线
交于
两点,过
分别作抛物线
的准线的垂线,垂足为
,连
交
轴于点
,连结
交
轴于点
.
①证明:⊥
;
②若与
交于点
,记△
、四边形
、△
的面积分别为
,问
是否存在实数
,使
成立?若存在,求出
的值;若不存在,请说明理由.
已知函数,在定义域内有且只有一个零点,存在
, 使得不等式
成立. 若
,
是数列
的前
项和.
(I)求数列的通项公式;
(II)设各项均不为零的数列中,所有满足
的正整数
的个数称为这个数列
的变号数,令
(n为正整数),求数列
的变号数;
(Ⅲ)设(
且
),使不等式
恒成立,求正整数
的最大值
已知椭圆C:的左焦点为
(-1,0),离心率为
,过点
的直线
与椭圆C交于
两点.
(Ⅰ)求椭圆C的方程;
(II)设过点F不与坐标轴垂直的直线交椭圆C于A、 B两点,线段AB的垂直平分线与轴交于点G,求点G横坐标的取值范围.
设函数
(Ⅰ)若函数在
处取得极小值是
,求
的值;
(Ⅱ)求函数的单调递增区间;
(Ⅲ)若函数在
上有且只有一个极值点, 求实数
的取值范围.
在空间五面体ABCDE中,四边形ABCD是正方形,,
. 点
是
的中点. 求证:
(I)
(II)