游客
题文

(1)学习雷锋精神前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好;
(2)单位对学习雷锋精神前后各半年内餐椅的损坏情况作了一个大致统计,具体数据如下:

 
损坏餐椅数
未损坏餐椅数
总 计
学习雷锋精神前
50
150
200
学习雷锋精神后
30
170
200
总 计
80
320
400

 
(1)求:学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学习雷锋精神是否有关?
(2)请说明是否有97.5%以上的把握认为损毁餐椅数量与学习雷锋精神有关?
参考公式:

P(K2≥k0
0.05
0.025
0.010
0.005
0.001
k0
3.841
5.024
6.635
7.879
10.828

 

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知向量满足的夹角为,求

已知函数∈R且),.
(Ⅰ)若,且函数的值域为[0, +),求的解析式;
(Ⅱ)在(Ⅰ)的条件下,当x∈[-2 , 2 ]时,是单调函数,求实数k的取值范围;
(Ⅲ)设, 且是偶函数,判断能否大于零?

(满分16分)
某医药研究所开发一种新药,据检测,如果成人按规定的剂量服用,服药后每毫升血液中的含药量为(微克)与服药后的时间(小时)之间近似满足如图所示的曲线,其中OA 是线段,曲线 ABC 是函数)的图象,且是常数.

(1)写出服药后y与x的函数关系式;
(2)据测定:每毫升血液中含药量不少于2 微克时治疗疾病有效.若某病人第一次服药时间为早上 6 : 00 ,为了保持疗效,第二次服药最迟应该在当天的几点钟?
(3)若按(2)中的最迟时间服用第二次药,则第二次服药3个小时后,该病人每毫升血液中含药量为多少微克。(结果用根号表示)

已知函数其中
.
(1)求函数的定义域,判断的奇偶性,并说明理由;
(2)若,求使成立的的集合

函数的定义域为集合A,关于x的不等式R)的解集为B,求使的实数a取值范围

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号