如图所示的几何体是由以等边三角形ABC为底面的棱柱被平面DEF所截面得,已知FA⊥平面ABC,AB=2,BD=1,AF=2, CE=3,O为AB的中点.
(1)求证:OC⊥DF;
(2)求平面DEF与平面ABC相交所成锐二面角的大小;
(3)求多面体ABC—FDE的体积V.
如图 ,在直角梯形
中,
,
,
,
,
是
的中点,
是
与
的交点.将
沿
折起到
的位置,如图
.
(Ⅰ)证明:
平面
;
(Ⅱ)若平面
平面
,求平面
与平面
夹角的余弦值.
的内角
所对的边分别为
.向量
与
平行.
(Ⅰ)求
;
(Ⅱ)若
求
的面积.
平面直角坐标系
中,已知椭圆
:
的离心率为
,且点(
,
)在椭圆
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设椭圆
:
,
为椭圆
上任意一点,过点
的直线
交椭圆
于
两点,射线
交椭圆
于点
.
(ⅰ)求
的值;
(ⅱ)求
面积的最大值.
设函数
. 已知曲线
在点
处的切线与直线
平行.
(Ⅰ)求
的值;
(Ⅱ)是否存在自然数
,使得方程
在
内存在唯一的根?如果存在,求出
;如果不存在,请说明理由;
(Ⅲ)设函数
(
表示,
中的较小值),求
的最大值.
已知数列
是首项为正数的等差数列,数列
的前
项和为
.
(Ⅰ)求数列
的通项公式;
(Ⅱ)设
,求数列
的前
项和
.