某地区注重生态环境建设,每年用于改造生态环境总费用为亿元,其中用于风景区改造为
亿元。该市决定建立生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年改造生态环境总费用至少
亿元,至多
亿元;③每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得每年改造生态环境总费用的22%。
(1)若,
,请你分析能否采用函数模型y=
作为生态环境改造投资方案;
(2)若、
取正整数,并用函数模型y=
作为生态环境改造投资方案,请你求出
、
的取值.
(本小题满分14分)
已知函数.
(1)设,且
,求
的值;
(2)在△ABC中,AB=1,,且△ABC的面积为
,求sinA+sinB的值.
.(本小题满分14分)
如图,平面平面
,点E、F、O分别为线段PA、PB、AC的中点,点
G是线段
CO的中点,
,
.求证:
(1)平面
;
(2)∥平面
.
(本小题满分14分)
有个首项都是1的等差数列,设第
个数列的第
项为
,公差为
,并且
成等差数列.
(Ⅰ)证明(
,
是
的多项式),并求
的值
(Ⅱ)当时,将数列
分组如下:
(每组数的个数构成
等差数列).
设前组中所有数之和为
,求数列
的前
项和
.
(Ⅲ)设是不超过20的正整数,当
时,对于(Ⅱ)中的
,求使得不等式
成立的所有
的值.
(本小题满分14分)
已知,
为椭圆
的左、右顶点,
为其右焦点,
是椭圆
上异于
,
的动点,且
面积的最大值为
.
(Ⅰ)求椭圆的方程及离心率;
(Ⅱ)直线与椭圆在点
处的切线交于点
,当直线
绕点
转动时,试判断以
为直径的圆与直线的位置关系,并加以证明.
(本小题满分13分)
已知函数.
(Ⅰ)若曲线在点
处的切线与直线
垂直,求函数
的单调区间;
(Ⅱ)若对于都有
成立,试求
的取值范围;
(Ⅲ)记.当
时,函数
在区间
上有两个零点,求实数
的取值范围.