游客
题文

2012年伦敦奥运会前夕,在海滨城市青岛举行了一场奥运选拔赛,其中甲、乙两名运动员为争取最后一个参赛名额进行了7轮比赛,得分的情况如茎叶图所示(单位:分).


 

8
7
9
5 4 5 4 1
8
4 4 6 7 4
1
9
1

(Ⅰ)分别求甲、乙两名运动员比赛成绩的平均分与方差;
(Ⅱ)若从甲运动员的7轮比赛的得分中任选3个不低于80分且不高于90分的得分,求这3个得分与其平均分的差的绝对值都不超过2的概率.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知数列 {an} 是首项为 a1=1 的等差数列,其前n项和为Sn,数列 {bn} 是首项 b1=2 的等比数列,且 b2S2=16,b1b3=b4
(Ⅰ)求数列 {an},{bn} 的通项公式;
(Ⅱ)若数列 {cn} 满足 ,求数列 {cn} 的前n项和 Tn

如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,D为BC中点.

(Ⅰ) 求证:A1B//平面ADC1
(Ⅱ) 求证:C1A⊥B1C;
(Ⅲ) 求直线B1C1与平面A1B1C所成的角.

设函数
(Ⅰ)求的最大值,并写出使取最大值是的集合;
(Ⅱ)求的单调递增区间;
(Ⅲ)已知△ABC中,角A,B,C的对边分别为a,b,c.若,求a的最小值.

(本小题满分14分)
直线与椭圆交于两点,已知,若且椭圆的离心率,又椭圆经过点为坐标原点.
(1)求椭圆的方程;
(2)若直线过椭圆的焦点为半焦距),求直线的斜率的值;
(3)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

(本小题满分12分)
已知函数的一个极值点.
(1)求函数的单调区间;
(2)若当时,恒成立,求的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号