如图,点P(0,﹣1)是椭圆C1:x2a2+y2b2=1a>b>0的一个顶点,C1的长轴是圆C2:X2+Y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D. (1)求椭圆C1的方程; (2)求△ABD面积的最大值时直线l1的方程.
如图,直线和相交于点,点,以为端点的曲线段上的任意一点到的距离与到点的距离相等,若为锐角三角形,,且,建立适当的坐标系,求曲线段的方程.
已知抛物线上一点到焦点的距离为,求此点坐标.
已知椭圆,右焦点为,求连接和椭圆上任意一点的线段的中点的轨迹方程.
已知是过点的两条互相垂直的直线,且与双曲线各两个交点,分别为和. (1)求的斜率的取值范围;(2)若,求的方程.
已知抛物线的焦点为,以为圆心,长为半径,在轴上方的半圆交抛物线于不同的两点,,是的中点. ⑴求的值; ⑵是否存在这样的值,使,,成等差数列?
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号