某糖厂为了了解一条自动生产线上袋装白糖的重量,随机抽取了100袋,并称出每袋白糖的重量(单位:g),得到如下频率分布表。
分组 |
频数 |
频率 |
[485.5,490.5) |
10 |
![]() |
[490.5,495.5) |
![]() |
![]() |
[495.5,500.5) |
![]() |
![]() |
[500.5,505.5] |
10 |
|
合计 |
100 |
|
表中数据,
,
成等差数列。
(I)将有关数据分别填入所给的频率。分布表的所有空格内,并画出频率分布直方图。
(II)在这100包白糖的重量中,估计其中位数。
(本小题满分8分)已知圆c:(x-1)2+y2=4,直线l:mx-y-1=0
(1)当m=–1时,求直线l圆c所截的弦长;
(2)求证:直线l与圆c有两个交点。
(本小题满分8分)已知直线l经过点(0,-2),其倾斜角的大小是60°
(1)求直线l的方程;
(2)求直线l与两坐标轴围成三角形的面积。
(本小题满分6分)对于函数f(x),若存在x0ÎR,使f(x0)=x0成立,则称点(x0,x0)为函数的不动点,已知函数f(x)=ax2+bx-b有不动点(1,1)和(-3,-3),求a、b的值。
已知定义在R上的函数,其中
为常数
(1)若是函数
的一个极值点,求
的值;
(2)讨论函数的单调性;
(3)当
时,若函数
在
处取得最大值,求
的取值范围.
在直角坐标系中,点
到点
,
的距离之和是
,点
的轨迹
与
轴的负半轴交于点
,不过点
的直线
与轨迹
交于不同的两点
和
.
⑴求轨迹的方程;
⑵当时,证明直线
过定点.