某高校在2011年的自主招生考试成绩中随机抽取 100名学生的笔试成绩,按成绩分组,得到的频率分布表如下所示.
(1)请先求出频率分布表中①,②位置相应的数据,再完成下列频率分布直方图;并确定中位数。(结果保留2位小数)
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,求第3,4,5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的条件下,学校决定在6名学生中随机抽取2名学生接受考官进行面试,求第4组至少有一名学生被考官A面试的概率?
(本题满分12分)
已知不等式的解集为
(1)求和
的值; (2)求不等式
的解集.
(本题满分12分)
求焦点为(-5,0)和(5,0),且一条渐近线为的双曲线的方程.
已知常数a>0,向量c=(0,a),i=(1,0),经过原点O以c+λi为方向向量的直线与经过定点A(0,a)以i-2λc为方向向量的直线相交于点P,其中λ∈R.试问:是否存在两个定点E、F,使得|PE|+|PF|为定值.若存在,求出E、F的坐标;若不存在,说明理由.
如图,在Rt△ABC中,已知BC=a,若长为2a的线段PQ以点A为中点,问的夹角
取何值时
的值最大?并求出这个最大值.
四边形ABCD中,=a,
=b,
=с,
=d,且a·b=b·с=с·d=d·a,试问四边形ABCD是什么图形?