如图,在平面直角坐标系中,点A,B的坐标分别为A(-1,0)、B(3,0)现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C、D,连接AC,BD.(1)直接写出点C、D的坐标,求四边形ABDC的面积;(2)在坐标轴上是否存在一点P,使=,若存在这样一点,求出点P的坐标,若不存在,试说明理由. (3)如图,在线段CO上取一点G,使OG=3CG,在线段OB上取一点F,使OF=2BF,CF 与BG交于点H,求四边形OGHF的面积.
如图,在⊙O中,已知AC=BD,试说明: (1)OC=OD; (2)AE=BF.
已知:关于x的方程-6x+m-5=0的一个根是1,求m值及另一根。
解方程: (1)-4=0 (2)+2x-1=0 (3) x(x+1)=x+1
对于实数a,b,定义运算“﹡”:例如4﹡2,因为4>2,所以4*2=4²-4×2=8.若x1,x2是一元二次方程-2x-3=0的两个根,则x1*x2=.
如图,已知抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3)。 (1)求抛物线的解析式; (2)若在该抛物线的对称轴上存在一点P,使得PC=PB,请求出符合条件的点P的坐标,并说明理由.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号