游客
题文

在公比为的等比数列中,的等差中项是.

(Ⅰ)求的值;
(Ⅱ)若函数,的一部分图像如图所示,为图像上的两点,设,其中与坐标原点重合,,求的值.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

如图,已知AB是⊙O的直径,CD是⊙O的切线,C为切点,连接AC,过点A作AD⊥CD于点D,交⊙O于点E.

(Ⅰ)证明:∠AOC=2∠ACD;
(Ⅱ)证明:AB•CD=AC•CE.

已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,(a为常数,e为自然对数的底,e≈2.71828).
(1)当a=1时,求f(x)的单调区间;
(2)若f(x)>0在区间(0,)上恒成立,求a的最小值.

如图,已知椭圆的右顶点为A(2,0),点P(2e,)在椭圆上(e为椭圆的离心率).

(1)求椭圆的方程;
(2)若点B,C(C在第一象限)都在椭圆上,满足,且,求实数λ的值.

某市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:

API
[0,50]
(50,100]
(100,150]
(150,200]
(200,250]
(250,300]
>300
空气质量


轻微污染
轻度污染
中度污染
中度重污染
重度污染
天数
4
13
18
30
9
11
15


记某企业每天由于空气污染造成的经济损失为S(单位:元),空气质量指数API为ω,在区间[0,100]对企业没有造成经济损失;在区间(100,300]对企业造成经济损失成直线模型(当API为150时造成的经济损失为500元,当API为200时,造成的经济损失为700元);当API大于300时造成的经济损失为2000元.
(1)试写出S(ω)表达式;
(2)试估计在本年内随机抽取一天,该天经济损失S大于500元且不超过900元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?

P(K2≥kc
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
Kc
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828


K2=


非重度污染
重度污染
合计
供暖季



非供暖季



合计


100

如图,四边形ABCD为矩形,四边形ADEF为梯形,FEAD,∠AFE=60°,且平面ABCD⊥平面ADEF,AF=FE=AB=2,点G为AC的中点.

(Ⅰ)求证:EG∥平面ABF;
(Ⅱ)求三棱锥B﹣AEG的体积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号