记 为数列 的前n项和, 为数列 的前n项积,已知 .
(1)证明:数列 是等差数列;
(2)求 的通项公式.
已知命题:方程
表示焦点在
轴上的椭圆;命题
:点
在圆
内.若
为真命题,
为假命题,试求实数
的取值范围.
设椭圆的中心在原点,对称轴为坐标轴,且长轴长是短轴长的2倍.又点P(4,1)在椭圆上,求该椭圆的方程.
已知二次函数=
,
,
.
(1)若,求函数
在
上为增函数的概率;
(2)若,求关于
的方程
=0一根在区间
内,另一根在
外的概率.
(本小题满分12分)某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进
行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非
低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数 |
分组 |
低碳族的人数 |
占本组的频率 |
第一组 |
[25,30) |
120 |
0.6 |
第二组 |
[30,35) |
195 |
p |
第三组 |
[35,40) |
100 |
0.5 |
第四组 |
[40,45) |
![]() |
0.4 |
第五组 |
[45,50) |
30 |
0.3 |
第六组 |
[50,55) |
15 |
0.3 |
(Ⅰ)补全频率分布直方图,并求、
、
的值;
(Ⅱ)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.
一个袋中装有5个形状大小完全相同的球,其中有2个红球,3个白球.
(1)从袋中随机取两个球,求取出的两个球颜色不同的概率;
(2)从袋中随机取一个球,将球放回袋中,然后再从袋中随机取一个球,求两次取出的球中至少有一个红球的概率.