如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=
.
(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.
(1)先化简,再求值: ,其中 ;
(2)解不等式: .
如图,已知正方形 ,点 是 边上一点,将 沿直线 折叠,点 落在 处,连接 并延长,与 的平分线相交于点 ,与 , 分别相交于点 , ,连接 .
(1)求证: ;
(2)若 , ,求点 到直线 的距离;
(3)当点 在 边上(端点除外)运动时, 的大小是否变化?为什么?
公路上正在行驶的甲车,发现前方 处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程 (单位: 、速度 (单位: 与时间 (单位: 的关系分别可以用二次函数和一次函数表示,其图象如图所示.
(1)当甲车减速至 时,它行驶的路程是多少?
(2)若乙车以 的速度匀速行驶,两车何时相距最近,最近距离是多少?
如图,已知在 中, , 与 相交于点 .
求证:(1) ;
(2)四边形 为菱形.
已知函数
(1)画出函数图象;
列表:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
描点,连线得到函数图象:
(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由;
(3)设 , , , 是函数图象上的点,若 ,证明: .