已知
、
分别为椭圆
:
的上、下焦点,其中
也是抛物线
:
的焦点,点
是
与
在第二象限的交点,且
。
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点
(1,3)和圆
:
,过点
的动直线
与圆
相交于不同的两点
,在线段
取一点
,满足:
,
(
且
)。
求证:点
总在某定直线上。
2013年12月21日上午10时,省会首次启动重污染天气Ⅱ级应急响应,正式实施机车尾号限行,当天某报社为了解公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
(1)完成被调查人员的频率分布直方图;
(2)若从年龄在
,
的被调查者中各随机选取两人进行追踪调查,记选中的4人中不赞成“车辆限行”的人数为
,求随机变量
的分布列和数学期望. 
已知公差不为0的等差数列
的前n项和为
,
,且
成等比数列.
(1)求数列
的通项公式;
(2)设
,求数列
的前n项和.
已知函数
.
(1)求函数
的最大值;
(2)若直线
是函数
的对称轴,求实数
的值.
已知函数
的定义域为
,且
的图象连续不间断. 若函数
满足:对于给定的
(
且
),存在
,使得
,则称
具有性质
.
(Ⅰ)已知函数
,
,判断
是否具有性质
,并说明理由;
(Ⅱ)已知函数
若
具有性质
,求
的最大值;
(Ⅲ)若函数
的定义域为
,且
的图象连续不间断,又满足
,
求证:对任意
且
,函数
具有性质
.
已知点
,点
为直线
上的一个动点.
(Ⅰ)求证:
恒为锐角;
(Ⅱ)若四边形
为菱形,求
的值.