如图,已知正方体,
分别为各个面的对角线;
(1)求证:;
(2)求异面直线所成的角.
(本小题满分12分)
已知数列的前
项的和为
,且有
,
。
.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列
的前n项的和
.
(本小题满分10分)w. 已知函数
其中
,
(I)若求
的值;
(Ⅱ)在(I)的条件下,若函数的图像的相邻两条对称轴之间的距离等于
,求函数
的解析式;并求最小正实数
,使得函数
的图像向左平移
个单位所对应的函数是偶函数。
(本小题满分14分)已知在函数的图象上以N(1,n)为切点的切线的倾斜角为
(1)求m、n的值;(2)是否存在最小的正整数k,使得不等式
恒成立?如果存在,请求出最小的正整数k;如果不存在,请说明理由;
(3)求证:
.
(本小题满分13分)已知椭圆的两焦点
和短轴的两端点
正好是一正方形的四个顶点,且焦点到椭圆上一点的最近距离为
.
(1)求椭圆的标准方程;
(2)设P是椭圆上任一点,AB 是圆C:的任一条直径,求
的
最大值.
(本小题满分12分)已知等差数列中,公差
,其前
项和为
,且满足
,
.
(1)求数列的通项公式;
(2)设(
),数列
的前
项和为
,求证:
;
(3)是否存在常数(
),
使得数列
为等差数列?若存在,试求出
;若不存在,说明理由.