为增强学生的身体素质,学校规定学生平均每天参加户外活动的时间不少于1小时。为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅未画完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中共调查了多少名学生?
(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;
(3)本次调查中学生参加户外活动的平均时间是否符合学校规定?
如图,矩形 的对角线 , 交于点 ,且 , ,连接 .求证: .
先化简,再求值: ,其中 .
如图,直线 与 轴交于点 ,与 轴交于点 ,点 为线段 的中点,点 是线段 上一动点(不与点 、 重合).
(1)请直接写出点 、点 、点 的坐标;
(2)连接 ,在第一象限内将 沿 翻折得到 ,点 的对应点为点 .若 ,求线段 的长;
(3)在(2)的条件下,设抛物线 的顶点为点 .
①若点 在 内部(不包括边),求 的取值范围;
②在平面直角坐标系内是否存在点 ,使 最大?若存在,请直接写出点 的坐标;若不存在,请说明理由.
数学课外活动小组的同学在学习了完全平方公式之后,针对两个正数之和与这两个正数之积的算术平方根的两倍之间的关系进行了探究,请阅读以下探究过程并解决问题.
猜想发现
由 ; ; ; ; ; .
猜想:如果 , ,那么存在 (当且仅当 时等号成立).
猜想证明
,
①当且仅当 ,即 时, , ;
②当 ,即 时, , .
综合上述可得:若 , ,则 成立(当且仅当 时等号成立).
猜想运用
对于函数 ,当 取何值时,函数 的值最小?最小值是多少?
变式探究
对于函数 ,当 取何值时,函数 的值最小?最小值是多少?
拓展应用
疫情期间,为了解决疑似人员的临时隔离问题.高速公路检测站入口处,检测人员利用检测站的一面墙(墙的长度不限),用63米长的钢丝网围成了9间相同的长方形隔离房,如图.设每间离房的面积为 (米 .问:每间隔离房的长、宽各为多少时,可使每间隔离房的面积 最大?最大面积是多少?
如图,在 中, , 为 边上一点,以 为圆心, 长为半径的 与 边相切于点 ,交 于点 .
(1)求证: ;
(2)连接 ,若 , ,求线段 的长.