已知椭圆的左、右焦点分别是
、
,
是椭圆右准线上的一点,线段
的垂直平分线过点
.又直线
:
按向量
平移后的直线是
,直线
:
按向量
平移后的直线是
(其中
)。
(1) 求椭圆的离心率的取值范围。
(2)当离心率最小且
时,求椭圆的方程。
(3)若直线与
相交于(2)中所求得的椭圆内的一点
,且
与这个椭圆交于
、
两点,
与这个椭圆交于
、
两点。求四边形ABCD面积
的取值范围。
已知是曲线C:
上的一点(其中
),过点
作与曲线C在
处的切线垂直的直线
交
轴于点
,过
作与
轴垂直的直线
与曲线C在第一象限交于点
;再过点
作与曲线C在
处的切线垂直的直线
交轴于点
,过
作与
轴垂直的直线
与曲线C在第一象限交于点
;如此继续下去,得一系列的点
、
、、
、。(其中
)
(1)求数列的通项公式。
(2)若,且
是数列
的前
项和,
是数列
的前
项
如图是一个斜三棱柱,已知
、平面
平面
、
、
,又
、
分别是
、
的中点.
(1)求证:∥平面
;(2)求二面角
的大小.
设P是⊙O:上的一点,以
轴的非负半轴为始边、OP为终边的角记为
,又向量
。且
.
(1)求的单调减区间;
(2)若关于的方程
在
内有两个不同的解,求
的取值范围.
某公司招聘员工采取两次考试(笔试)的方法:第一试考选择题,共10道题(均为四选一题型),每题10分,共100分;第二试考解答题,共3题。规则是:只有在一试中达到或超过80分者才获通过并有资格参加二试,参加二试的人只有答对2题或3题才能被录用。现有甲、乙两人参加该公司的招聘考试。且已知在一试时:两人均会做10道题中的6道;对于另外4道题来说,甲有两题可排除两个错误答案、有两题完全要猜,乙有两题可排除一个错误答案、有一题可排除两个错误答案、有一题完全要猜。进入二试后,对于任意一题,甲答对的概率是、乙答对的概率是
.(1)分别求甲、乙两人能通过一试进入二试的概率
、
;(2)求甲、乙两人都能被录用的概率
.