已知椭圆的一条准线方程是
,其左、右顶点分别是A、B;双曲线
的一条渐近线方程为
.
(1)求椭圆的方程及双曲线
的离心率;
(2)在第二象限内取双曲线上一点P,连结BP交椭圆
于点M,连结PA并延长交椭圆
于点N,若
.求证:
.
若函数f(x)=ax3+bx2+cx+d是奇函数,且
(1)求函数f(x)的解析式;
(2)求函数f(x)在[-1,m](m>-1)上的最大值;
(3)设函数g(x)=,若不等式g(x)·g(2k-x)≥(-k)2在(0,2k)上恒成立,求实数k的取值范围.
若函数f(x)=ax3+bx2+cx+d是奇函数,且f(x)极小值=f(-)=-.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[-1,m](m>-1)上的最大值;
(3)设函数g(x)=,若不等式g(x)·g(2k-x)≥(-k)2在(0,2k)上恒成立,求实数k的取值范围.
设
(1)求点的轨迹C的方程;
(2)过点的直线
交曲线C于A,B两点(A在P,B之间),设
直线
的斜率为k,当
时,求实数
的取值范围。
已知是定义在
上的函数,且满足下列条件:
①对任意的,
;②当
时,
.
(1)证明是定义在
上的减函数;
(2)如果对任意实数,有
恒成立,求实数
的取值范围。
已知平面区域恰好被面积最小的圆
及其内
部所覆盖.(1)试求圆的方程.
(2)若斜率为1的直线与圆C交于不同两点
满足
,求直线
的方程.