已知某圆的极坐标方程为(I)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;(II)若点
在该圆上,求
的最大值和最小值.
一袋中装有5个球,编号分别为1,2,3,4,5;设编号为n的球重量为; 这些球等可能地从袋中取出。
(1)任取1球,试求其重量大于编号的概率;
(2)不放回先后逐一取出2球,求他们质量相等的概率。
已知函数
(1)求的最小正周期;
(2)当时,求
的单调递增区间。
(1)计算+
(2)已知,求
(本小题满分14分)已知函数满足
,当
时
;当
时
.
(Ⅰ)求函数在(-1,1)上的单调区间;
(Ⅱ)若,求函数
在
上的零点个数.
(本小题满分14分)已知半径为的圆的圆心在
轴上,圆心的横坐标是整数,且与直线
相切.
(Ⅰ)求圆的方程;
(Ⅱ)设直线与圆相交于
两点,求实数
的取值范围;
(Ⅲ) 在(Ⅱ)的条件下,是否存在实数,使得弦
的垂直平分线
过点
,若存在,求出实数
的值;若不存在,请说明理由.