游客
题文

某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率P与日产量x(万件)之间大体满足关系:(其中c为小于6的正常数).  (注:次品率=次品数/生产量,如P=0.1表示每生产10件产品,有1件为次品,其余为合格品),已知每生产1万件合格的元件可以盈利2万元,但每生产出1万件次品将亏损1万元,故厂方希望定出合适的日产量.
(1)试将生产这种仪器的元件每天的盈利额T(万元)表示为日产量x(万件)的函数;
(2)当日产量为多少时,可获得最大利润?

科目 数学   题型 解答题   难度 较易
知识点: 三面角、直三面角的基本性质
登录免费查看答案和解析
相关试题

已知a , b , c∈R+,证明:
(Ⅰ)(A + b + c )(A2 + b2 + c2 ) ≤ 3(A3 + b3 +c3 );
(Ⅱ).

已知曲线C的参数方程是( θ为参数 ),以直角坐标系xoy的原点为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρ(cosθ+ sinθ) = 4
(Ⅰ)试求曲线C上任意点M到直线l的距离的最大值;
(Ⅱ)设P是l上的一点,射线OP交曲线C于R点,又点Q在射线OP上,且满足|OP|·|OQ|=|OR|2,当点P在直线l上移动时,试求动点Q的轨迹.

如图,点A为圆外一点,过点A作圆的两条切线,切点分别为B,C,ADE是圆的一条割线,连接CD, BD, BE, CE。
(Ⅰ)求证:BE·CD = BD·CE
(Ⅱ)延长CD,交AB于F,若CE∥AB,证明:F为线段AB的中点

已知函数,.
(Ⅰ)求证:
(Ⅱ)当0≤x≤1时,若f(x) ≥ g(x)恒成立,求a的取值范围.

已知抛物线y2 =" 2px" (p > 0)的交点为F,过引直线l交此抛物线于A,B两点.
(Ⅰ)若直线AF的斜率为2,求直线BF的斜率;
(Ⅱ)若p=2,点M在抛物线上,且,求t的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号