在极坐标系内,已知曲线的方程为
,以极点为原点,极轴方向为
正半轴方向,利用相同单位长度建立平面直角坐标系,曲线
的参数方程为
(
为参数).
(1)求曲线的直角坐标方程以及曲线
的普通方程;
(2)设点为曲线
上的动点,过点
作曲线
的两条切线,求这两条切线所成角余弦值的取值范围.
设是△ABC三边上的点,它们使
,
,若
,
,试用
将
,
表示出来
若,求函数
的最大值和最小值,并求出取得最值时
的值。
已知,且
,
求的值.
已知圆:
,直线
的方程为
,点
是直线
上一动点,过点
作圆的切线
、
,切点为
、
.
(1)当的横坐标为
时,求∠
的大小;
(2)求证:经过A、P、M三点的圆必过定点,并求出该定点的坐标;
(3)求证:直线必过定点,并求出该定点的坐标;
(4)求线段长度的最小值.
.
点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于
轴上方,
.
(1)求点P的坐标;
(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求点M的坐标;
(3)在(2)的条件下,求椭圆上的点到点M的距离的最小值.