建造一个容积为50,高为2
长方体的无盖铁盒,问这个铁盒底面的长和宽各为多少时材料最省?
已知函数,
,其中
.
(Ⅰ)讨论的单调性;
(Ⅱ)若在其定义域内为增函数,求正实数
的取值范围;
(Ⅲ)设函数,当
时,若
,
,总有
成立,求实数
的取值范围.
设,函数
.
(1)若,求函数
的极值与单调区间;
(2)若函数的图象在
处的切线与直线
平行,求
的值;
(3)若函数的图象与直线
有三个公共点,求
的取值范围.
已知向量,
,且
.
(1)当时,求
;
(2)设函数,求函数
的最值及相应的
的值.
单调递增数列的前
项和为
,且满足
,
(1)求数列的通项公式;
(2)数列满足
,求数列
的前
项和
.
已知函数的周期为
,其中
.
(Ⅰ)求的值及函数
的单调递增区间;
(Ⅱ)在中,设内角A、B、C所对边的长分别为a、b、c,若
,
,f(A)=
,求b的值.