高空遥感探测卫星在距地球表面高为h处绕地球转动,如果地球质量为M,地球半径为R,人造卫星质量为m,万有引力常量为G,求:
(1)人造卫星的角速度多大?
(2)人造卫星绕地球转动的周期是多少?
(3)人造卫星的向心加速度多大?
如图所示,某传送带装置倾斜放置,倾角=37o,传送带AB长度xo=l0m。有一水平平台CD高度保持6.45m不变。现调整D端位置,当D、B的水平距离合适时,自D端水平抛出的物体恰好从B点沿BA方向冲上斜面,此后D端固定不动,g=l0m/s2。另外,传送带B端上方安装一极短的小平面,与传送带AB平行共面,保证自下而上传送的物体能沿AB方向由B点斜向上抛出。(sin37o=0.6,cos37o=0.8)
(1)求D、B的水平距离;
(2)若传送带以5m/s的速度逆时针匀速运行,某物体甲与传送带间动摩擦因数1=0.9,自A点沿传送带方向以某一初速度冲上传送带时,恰能水平落到水平台的D端,求物体甲的最大初速度vo1
(3)若传送带逆时针匀速运行,某物体乙与传送带间动摩擦因数2=0.6,自A点以vo2=11m/s的初速度沿传送带方向冲上传送带时,恰能水平落到水平台的D端,求传送带的速度v′。
如图所示,竖直平面内有两光滑金属圆轨道,平行正对放置,直径均为d,电阻不计。某金属棒长L、质量m、电阻r,放在圆轨道最低点MM' 处,与两导轨刚好接触。两圆轨道通过导线与电阻R相连。空间有竖直向上的匀强磁场,磁感应强度为B。现使金属棒获得垂直纸面向里的初速度vo,当其沿圆轨道滑到最高点NN' 处时,对轨道恰无压力(滑动过程中金属棒与圆轨道始终接触良好)。重力加速度为g,求:
(1)金属棒刚获得垂直纸面向里的初速度时,判断电阻R中电流的方向;
(2)金属棒到达最高点NN' 处时,电路中的电功率;
(3)金属棒从MM' 处滑到NN' 处的过程中,电阻R上产生的焦耳热。
质量为m、电荷量为q的带负电粒子自静止开始释放,经M、N板间的电场加速后,从A点垂直于磁场边界射入宽度为d的匀强磁场中,该粒子离开磁场时的位置P偏离入射方向的距离为L,如图所示.已知M、N两板间的电压为U,粒子的重力不计.求:匀强磁场的磁感应强度B.
如图所示,A、B为两块足够大的相距为d的平行金属板,接在电压为U的电源上。在A板的中央P点放置一个电子发射源。可以向各个方向释放电子,射出的初速度为v,电子打在B板上的区域面积为S,(不计电子的重力),试求电子的比荷
如图所示的天平可用来测定磁感应强度,天平的右臂下面挂有一个矩形线圈,宽为L,共N匝,线圈下部悬在匀强磁场中,磁场方向垂直纸面,当线圈中通有电流I时,方向如图,在天平左右两盘各加质量分别为m1、m2的砝码,天平平衡,当电流反向时(大小不变),右盘再加上质量为m的砝码后,天平重新平衡,试:
(1)判定磁场的方向并推导磁感应强度的表达式
(2)当L=0.1m; N=10; I=0.1A;m=9×10-3kg时磁感应强度是多少?