游客
题文

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆C的方程;
(2)设是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,求直线的斜率的取值范围;
(3)在(2)的条件下,证明直线轴相交于定点.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:
甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为,边界忽略不计)即为中奖.

乙商场:从装有个白球和个红球的盒子中一次性摸出球(这些球除颜色外
完全相同),如果摸到的是个红球,即为中奖.
试问:购买该商品的顾客在哪家商场中奖的可能性大?请说明理由.

已知数列的前项和为,且满足,设
(Ⅰ)求证:数列是等比数列;
(Ⅱ)若,求实数的最小值;
(Ⅲ)当时,给出一个新数列,其中设这个新数列的前项和为,若可以写成)的形式,则称为“指数型和”.问中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.

已知椭圆的中心在原点,焦点在轴上,离心率为,且椭圆上的点到两个焦点的距离之和为
(Ⅰ)求椭圆的方程;
(Ⅱ)设为椭圆的左顶点,过点的直线与椭圆交于点,与轴交于点,过原点与平行的直线与椭圆交于点.证明:

已知函数
(Ⅰ)当时,求在区间上的最小值;
(Ⅱ)求证:存在实数,有

如图,三棱柱的侧面是边长为的正方形,侧面侧面的中点.

(Ⅰ)求证:∥平面
(Ⅱ)求证:平面
(Ⅲ)在线段上是否存在一点,使二面角,若存在,求的长;若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号