已知函数f(x)=-x3+
x2-2x(a∈R).
(1)当a=3时,求函数f(x)的单调区间;
(2)若对于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求实数a的取值范围;
(3)若过点可作函数y=f(x)图象的三条不同切线,求实数a的取值范围.
已知,点
在函数
的图象上,其中
(1)证明:数列是等比数列,并求数列
的通项公式;
(2)记,求数列
的前
项和
.
设
(1)当,解不等式
;
(2)当时,若
,使得不等式
成立,求实数
的取值范围.
以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线的参数方程为
(t为参数,0<a<
),曲线C的极坐标方程为
.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A、B两点,当a变化时,求|AB|的最小值.
如图,已知⊙O是的外接圆,
是
边上的高,
是⊙O的直径.
(1)求证:;
(2)过点作⊙O的切线交
的延长线于点
,若
,求
的长.
设.
(Ⅰ)若,讨论
的单调性;
(Ⅱ)时,
有极值,证明:当
时,