我市南山区两村盛产荔枝,甲村有荔枝200吨,乙村有荔枝300吨.现将这些荔枝运到A,B两个冷藏仓库,已知A仓库可储存240吨,B仓库可储存260吨;从甲村运往A、B两处的费用分别为每吨20元和25元,从乙村运往A,B两处的费用分别为每吨15元和18元.设从甲村运往A仓库的荔枝重量为吨,甲、乙两村运往两仓库的荔枝运输费用分别为
元和
元.
(1)请填写下表,并求出、
与
之间的函数关系式;
(2)试讨论甲、乙两村中,哪个村的运费较少;
(3)考虑到乙村的经济承受能力,乙村的荔枝运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.
先化简再求值(本题6分),其中a满足
解不等式组
已知四边形ABCD,点E是射线BC上的一个动点(点E不与B、C两点重合),线段BE的垂直平分线交射线AC于点P,联结DP,PE.
(1)若四边形ABCD是正方形,猜想PD与PE的关系,并证明你的结论.
(2)若四边形ABCD是矩形,(1)中的PD与PE的关系还成立吗?(填:成立或不成立).
(3)若四边形ABCD是矩形,AB=6,cos∠ACD=,设AP=x,△PCE的面积为y,当AP>
AC时,求y与x之间的函数关系式.
已知:如图,二次函数y=a(x+1)2-4的图象与x轴分别交于A、B两点,与y轴交于点D,点C是二次函数y=a(x+1)2-4的图象的顶点,CD=.
(1)求a的值.
(2)点M在二次函数y=a(x+1)2-4图象的对称轴上,
且∠AMC=∠BDO,求点M的坐标.
(3)将二次函数y=a(x+1)2-4的图象向下平移k(k>0)个单位,平移后的图象与直线CD分别交于E、F两点(点F在点E左侧),设平移后的二次函数的图象的顶点为C1,与y轴的交点为D1,是否存在实数k,使得CF⊥FC1,若存在,求出k的值;若不存在,请说明理由.
已知二次函数
(1)求证:无论a为任何实数,二次函数的图象与x轴
总有两个交点.
(2)当x≥2时,函数值随
的增大而减小,求
的取
值范围.
(3)以二次函数图象的顶点
为一个顶点作该二次函数图象的内接正三角形
(M,N两点在二次函数的图象上),请问:△
的面积是与a无关的定值吗?若是,请求出这个定值;若不是,请说明理由.