已知函数处取得极值.
(1)求的值;
(2)求的单调区间;
(3)若当时恒有
成立,求实数c的取值范围.
(本小题共14分)已知四棱锥的底面是菱形.
,
,
,
与
交于
点,
,
分别为
,
的中点.
(Ⅰ)求证:∥平面
;
(Ⅱ)求证:平面
;
(Ⅲ)求直线与平面
所成角的正弦值.
(本小题共13分)在△中,角
,
,
的对边分别为
,
,
分,且满足
.
(Ⅰ)求角的大小;
(Ⅱ)若,求△
面积的最大值.
(本小题满分14分)有个首项都是1的等差数列,设第
个数列的第
项为
,公差为
,并且
成等差数列.
(Ⅰ)证明(
,
是
的多项式),并求
的值;
(Ⅱ)当时,将数列
分组如下:
(每组数的个数构成等差数列).设前
组中所有数之和为
,求数列
的前
项和
.
(Ⅲ)设是不超过20的正整数,当
时,对于(Ⅱ)中的
,求使得不等式
成立的所有
的值.
(本小题满分14分)已知,
为椭圆
的左、右顶点,
为其右焦点,
是椭圆
上异于
,
的动点,且
面积的最大值为
.
(Ⅰ)求椭圆的方程及离心率;
(Ⅱ)直线与椭圆在点
处的切线交于点
,当直线
绕点
转动时,试判断以
为直径的圆与直线
的位置关系,并加以证明.
(本小题满分13分)已知函数.
(Ⅰ)若曲线在点
处的切线与直线
垂直,求函数
的单调区间;
(Ⅱ)若对于都有
成立,试求
的取值范围;
(Ⅲ)记.当
时,函数
在区间
上有两个零点,求实数
的取值范围.