已知函数,
.
(1)若,求函数
的单调区间;
(2)若恒成立,求实数
的取值范围;
(3)设,若对任意的两个实数
满足
,总存在
,使得
成立,证明:
.
已知数列是各项均不为0的等差数列,公差为d,
为其前n项和,且满足
,
.数列
满足
,
,
为数列
的前n项和.
(1)求数列的通项公式
和数列
的前n项和
;
(2)若对任意的,不等式
恒成立,求实数
的取值范围;
(3)是否存在正整数,使得
成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
已知曲线上动点
到定点
与定直线
的距离之比为常数
.
(1)求曲线的轨迹方程;
(2)若过点引曲线C的弦AB恰好被点
平分,求弦AB所在的直线方程;
(3)以曲线的左顶点
为圆心作圆
:
,设圆
与曲线
交于点
与点
,求
的最小值,并求此时圆
的方程.
某省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数与时刻
(时) 的关系为
,其中
是与气象有关的参数,且
.
(1)令,
,写出该函数的单调区间,并选择其中一种情形进行证明;
(2)若用每天的最大值作为当天的综合放射性污染指数,并记作
,求
;
(3)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?
已知函数.]
(1)求函数的最小值和最小正周期;
(2)设的内角
、
、
的对边分别为
,
,
,且
,
,
若,求
,
的值.
如图,已知四棱锥的底面ABCD为正方形,
平面ABCD,E、F分别是BC,PC的中点,
,
.
(1)求证:平面
;
(2)求二面角的大小.