在平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线BC经过点B(-8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转α度(0<α≤180°)得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于P、Q.
(1)四边形OABC的形状是 , ;
(2)①如图1,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求PQ的长;
②如图2,当四边形OA′B′C′的顶点B′落在直线BC上时,求PQ的长.
(3)小明在旋转中发现,当点P位于点B的右侧时,总存在线段PQ与线段 相等;同时存在着特殊情况,求出此时P点的坐标。
如图,在锐角三角形 中, 是 边上的高,以 为直径的 交 于点 ,交 于点 ,过点 作 ,垂足为 ,交 于点 ,交 于点 ,连接 , , .
(1)求证: ;
(2)若 , , ,求 的长.
小刚家到学校的距离是1800米.某天早上,小刚到学校后发现作业本忘在家中,此时离上课还有20分钟,于是他立即按原路跑步回家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车时间比跑步时间少用了4.5分钟,且骑自行车的平均速度是跑步的平均速度的1.6倍.
(1)求小刚跑步的平均速度;
(2)如果小刚在家取作业本和取自行车共用了3分钟,他能否在上课前赶回学校?请说明理由.
某工程队准备从 到 修建一条隧道,测量员在直线 的同一侧选定 , 两个观测点,如图.测得 长为 , 长为 , 长为 , , 、 、 、 在同一水平面内).
(1)求 、 两点之间的距离;
(2)求隧道 的长度.
为了庆祝中国共产党建党100周年,某校开展了学党史知识竞赛.参加知识竞赛的学生分为甲乙两组,每组学生均为20名,赛后根据竞赛成绩得到尚不完整的统计图表(如图),已知竞赛成绩满分为100分,统计表中 , 满足 .请根据所给信息,解答下列问题:
甲组20名学生竞赛成绩统计表
成绩(分 |
70 |
80 |
90 |
100 |
人数 |
3 |
|
|
5 |
(1)求统计表中 , 的值;
(2)小明按以下方法计算甲组20名学生竞赛成绩的平均分是: (分 .根据所学统计知识判断小明的计算是否正确,若不正确,请写出正确的算式并计算出结果;
(3)如果依据平均成绩确定竞赛结果,那么竞赛成绩较好的是哪个组?请说明理由.
如图,抛物线 交 轴于 , 两点,交 轴于点 ,动点 在抛物线的对称轴上.
(1)求抛物线的解析式;
(2)当以 , , 为顶点的三角形周长最小时,求点 的坐标及 的周长;
(3)若点 是平面直角坐标系内的任意一点,是否存在点 ,使得以 , , , 为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点 的坐标;若不存在,请说明理由.