为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
|
喜爱打篮球 |
不喜爱打篮球 |
合计 |
男生 |
|
5 |
|
女生 |
10 |
|
|
合计 |
|
|
50 |
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为.
(1)请将上面的列联表补充完整;
(2)是否在犯错误的概率不超过0.5%的前提下认为喜爱打篮球与性别有关?说明你的理由.下面的临界值表供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005] |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:,其中
)
已知函数.
(1)求证函数在区间
上存在唯一的极值点,并用二分法求函数取得极值时相应
的近似值(误差不超过
);(参考数据
,
,
)
(2)当时,若关于
的不等式
恒成立,试求实数
的取值范围.
设,在线段
上任取两点(不含两端点),将线段分成了三条线段.
(1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形的概率;
(2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形的概率.
如图,三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分线段PC,且分别交AC、PC于D、E两点,又PB=BC,PA=AB。
(1)求证:PC⊥平面BDE;
(2)若点Q是线段PA上任一点,判断BD、DQ的位置关系,并证明你的结论;
(3)若AB=2,求三棱锥B-CED的体积
已知函数的图像经过点A(0,0),B(3,7)及C
,
为数列
的前n项和
(I)求
(II)若数列满足
,求数列
的前n项和
在△ABC中,内角A,B,C所对边长分别为,
,
,
.
(1)求的最大值及
的取值范围;
(2)求函数的最大值和最小值.