某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日 期 |
1月10日 |
2月10日 |
3月10日 |
4月10日 |
5月10日 |
6月10日 |
昼夜温差x(°C) |
10 |
11 |
13 |
12 |
8 |
6 |
就诊人数y(个) |
22 |
25 |
29 |
26 |
16 |
12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求
线性回归方程,再用被选取的2组数据进行检验.
(Ⅰ)求选取的2组数据恰好是相邻两个月的概率;
(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x
的线性回归方程;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2
人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理
想?
(参考公式:)
设,试比较
的大小.
一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出
3个球,以表示取出球的最大号码,求
的分布列。
.已知复数,当
实数
为何值时,
(1)为实数;
(2)
为虚数;
(3)为纯虚数.
有4名男生和5名女生,排成一排,下列情况有多少种不同排法(列出式子,再写出结果)
(1)甲只能在中间;
(2)甲不在最左边,也不在最右边;
(3)女生必须排在一起;
(4)男生互不相邻。
(5)男生女生间隔
.
如图,△ABC内接于⊙O,过点A的直线交⊙O于点P,交BC的延长线于点D,
且AB2=AP·AD
(1)求证:AB=AC;
(2)如果∠ABC=60°,⊙O的半径为1,且P为弧AC的中点,求AD的长.