游客
题文

如图,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:

(1)B,C,H,G四点共面;
(2)平面EFA1∥平面BCHG.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

(本题16分)已知方程x2+y2-2x-4y+m=0.
(1)若此方程表示圆,求的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于MN两点,且OMONO为坐标原点)求m的值;
(3)在(2)的条件下,求以MN为直径的圆的方程.

如图,互相垂直的两条公路旁有一矩形花园,现欲将其扩建成一个更大的三角形花园,要求在射线上,在射线上,且过点,其中米,米. 记三角形花园的面积为S.
(Ⅰ)当的长度是多少时,S最小?并求S的最小值.
(Ⅱ)要使S不小于平方米,则的长应在什么范围内?

(本大题14分)如图,在棱长为a的正方体ABCD-A1B1C1D1中,EFG分别是CBCDCC1的中点.

(1)求证:B1D1∥面EFG
(2)求证:平面AA1C⊥面EFG

(本题16分)已知{an}是等差数列,且a1=2,a1+a2+a3=12.
(1)求数列{an}的通项公式;
(2)令bn= an3n,求{bn}的前n项的和Tn

(本题14分)已知△ABC中,角ABC,所对的边分别是abc且2(a2+b2c2)=3ab
(1)求cosC
(2)若c=2,求△ABC面积的最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号