如图,圆与圆
内切于点
,其半径分别为
与
,圆
的弦
交圆
于点
(
不在
上),求证:
为定值。
(本小题满分14分)设函数.
(Ⅰ)讨论的单调性;
(Ⅱ)若对任意
恒成立,求实数m的取值范围.
(本小题满分12分)三人独立破译同一份密码,已知三人各自译出密码的概率分别为,且他们是否破译出密码互不影响.
(1)求恰有二人破译出密码的概率;
(2)求密码被破译的概率.
(本小题满分12分)已知,且
,求
的值.
(本小题满分14分)
设函数的定义域为R,当x<0时,
>1,且对任意的实数x,y∈R,有
.
(1)求,判断并证明函数
的单调性;
(2)数列满足
,且
,
①求通项公式;
②当时,不等式
对不小于2的正整数
恒成立,求x的取值范围.
(本小题满分14分)
已知椭圆的焦点F与抛物线C:
的焦点关于直线x-y=0
对称.
(Ⅰ)求抛物线的方程;
(Ⅱ)已知定点A(a,b),B(-a,0)(ab),M是抛物线C上的点,设直线AM,
BM与抛物线的另一交点为.求证:当M点在抛物线上变动时(只要
存在
且)直线
恒过一定点,并求出这个定点的坐标.