(本小题满分13分)
甲乙两名射手互不影响地进行射击训练,根据以往的数据统计,他们设计成绩的分布列如下:
射手甲 |
射手乙 |
||||||
环数 |
8 |
9 |
10 |
环数 |
8 |
9 |
10 |
概率 |
![]() |
![]() |
![]() |
概率 |
![]() |
![]() |
![]() |
(1)若甲射手共有5发子弹,一旦命中10环就停止射击,求他剩余3颗子弹的概率;
(2)若甲乙两射手各射击两次,求四次射击中恰有三次命中10环的概率;
(3)若两个射手各射击1次,记所得的环数之和为,求
的分布列和期望。
(本小题共12分)设数列的前
项和为
,且
.
(1)求数列的通项公式;
(2)若数列满足
,求数列
的通项公式.
(本小题满分12分)已知函数,x∈R .
(Ⅰ)求函数的最小正周期;
(Ⅱ)判断函数在区间
上是否为增函数?并说明理由.
(本小题满分13分)已知函数(
为自然对数的底数).
(1)若曲线在点
处的切线平行于
轴,求
的值;
(2)讨论函数的极值情况;
(3)当时,若直线
与曲线
没有公共点,求k的取值范围.
(本小题满分13分)已知数列满足
,
为其前
项和,且
.
(1)求的值;
(2)求证:;
(3)判断数列是否为等差数列,并说明理由.
(本小题满分13分)已知椭圆的方程为
,双曲线
的左、右焦点分别是
的左、右顶点,而
的
左、右顶点分别是的左、右焦点.
(1)求双曲线的方程;
(2)若直线与双曲线
恒有两个不同的交点A和B,且
(其中
为原点),求实数
的范围.