某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为
,中奖可以获得2分;方案乙的中奖率为
,中奖可以获得3分;未中奖则不得分。每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品。
(Ⅰ)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为
,求
的概率;
(Ⅱ)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?
在中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D。
(1)求证: ;
(2)若AC=3,求的值。
函数.
(Ⅰ) 当时,求证:
;
(Ⅱ) 在区间上
恒成立,求实数
的范围。
(Ⅲ) 当时,求证:
)
.
已知椭圆的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点(2,0)的直线与椭圆
相交于两点
,设
为椭圆上一点,且满足
(
为坐标原点),当
<
时,求实数
的取值范围.
如图,在四棱锥中,
底面
,
是直角梯形,
,
,
是
的中点。
(1)求证:平面平面
(2)若二面角的余弦值为
,求直线
与平面
所成角的正弦值.
某篮球队甲、乙两名队员在本赛季已结束的8场比赛中得分统计的茎叶图如下:
(1)比较这两名队员在比赛中得分的均值和方差的大小;
(2)以上述数据统计甲、乙两名队员得分超过15分的频率作为概率,假设甲、乙两名队员在同一场比赛中得分多少互不影响,预测在本赛季剩余的2场比赛中甲、乙两名队员得分均超过15分的次数的分布列和均值.