游客
题文

某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为 2 3 ,中奖可以获得2分;方案乙的中奖率为 2 5 ,中奖可以获得3分;未中奖则不得分。每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品。
(Ⅰ)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为 X ,求 X 3 的概率;
(Ⅱ)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

(1)求以为渐近线,且过点的双曲线的方程;
(2)求以双曲线的顶点为焦点,焦点为顶点的椭圆的方程;
(3)椭圆上有两点为坐标原点,若直线斜率之积为,求证:为定值

已知向量,函数
(1)求函数的最小正周期;
(2)若的内角的对边,,且是函数上的最大值,求:角,角边的大小.

已知椭圆的焦点坐标为,长轴等于焦距的2倍.
(1)求椭圆的方程;
(2)矩形的边轴上,点落在椭圆上,求矩形绕轴旋转一周后所得圆柱体侧面积的最大值.

(理)对数列,若对任意正整数,恒有,则称数列是数列的“下界数列”.
(1)设数列,请写出一个公比不为1的等比数列,使数列是数列的“下界数列”;
(2)设数列,求证数列是数列的“下界数列”;
(3)设数列,构造,求使恒成立的的最小值.

(本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
(文)已知数列中,
(1)求证数列不是等比数列,并求该数列的通项公式;
(2)求数列的前项和
(3)设数列的前项和为,若对任意恒成立,求的最小值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号