某商区停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过小时收费
元,超过
小时的部分每小时收费
元(不足
小时的部分按
小时计算).现有甲、乙二人在该商区临时停车,两人停车都不超过
小时.
(1)若甲停车小时以上且不超过
小时的概率为
,停车付费多于
元的概率为
,求甲停车付费恰为
元的概率;
(2)若每人停车的时长在每个时段的可能性相同,求甲、乙二人停车付费之和为元的概率.
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m的进出口,如图所示已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元)
⑴将y表示为x的函数;
⑵写出f(x)的单调区间,并证明;
⑶根据⑵,试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
已知ABCD四点的坐标分别为 A(1,0), B(4,3),
C(2,4),D(0,2)
⑴证明四边形ABCD是梯形;
⑵求COS∠DAB。
⑶设实数t满足(-t
)·
=0,求t的值。
⑴已知cos(x+)=
,求cos(
-x)+ cos2(
-x)的值。
⑵已知tanα=2,求
已知函数f(x)=-3sin2x-4cosx+2
⑴求f()的值;
⑵求f(x)的最大值和最小值。
集合A={>1},B={
>2},A
B,求a的取值范围。