如图,抛物线 ,点 在抛物线 上,过 作 的切线,切点为 ( 为原点 时, 重合于 ).当 时,切线 的斜率为 .
(I)求
的值;
(II)当
在
上运动时,求线段
中点
的轨迹方程(
重合于
时,中点为
).
已知多项式f(n)=n5+
n4+
n3-
n.
(1)求f(-1)及f(2)的值;
(2)试探求对一切整数n,f(n)是否一定是整数?并证明你的结论.
已知(1+x)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n(n∈N*).
(1)求a0及Sn=a1+a2+a3+…+an;
(2)试比较Sn与(n-2)2n+2n2的大小,并说明理由.
已知的展开式的二项式系数之和比(a+b)2n的展开式的系数之和小240,求
n的展开式中系数最大的项.
求证:1+2+22+…+25n-1能被31整除.
为拉动经济增长,某市决定新建一批基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目个数分别占总数的,
,
,现在3名工人独立地从中任意一个项目参与建设.
(1)求他们选择的项目所属类别互不相同的概率.
(2)记X为3人中选择的项目所属于基础设施工程或产业建设工程的人数,求X的分布列及数学期望.