如图,四棱锥 P - A B C D 中, ∠ A B C = ∠ B A D = 90 ° , B C = 2 A D , △ P A B 和 △ P A D 都是等边三角形.
(Ⅰ)证明: P B ⊥ C D ; (Ⅱ)求二面角 A - P D - C 的大小.
已知函数的定义域为,函数 (1)求函数的定义域; (2)若是奇函数,且在定义域上单调递减,求不等式的解集.
已知椭圆的离心率为,长轴长为,直线交椭圆于不同的两点. (1)求椭圆的方程; (2)是坐标原点,求面积的最大值.
中,边上的中线所在直线方程为,的平分线方程为. (1)求顶点的坐标; (2)求直线的方程.
求与轴相切,圆心在直线上,且被直线截得的弦长为的圆的方程.
已知直线经过直线的交点,且点到直线的距离为3,求直线的方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号