已知函数 f x , x ∈ R . (Ⅰ) 若直线 y = k x + 1 与 f x 的反函数的图像相切, 求实数 k 的值; (Ⅱ) 设 x > 0 , 讨论曲线 y = f x 与曲线 y = m x 2 m > 0 公共点的个数. (Ⅲ) 设 a < b , 比较 f a + f b 2 与 f b - f a b - a 的大小, 并说明理由.
已知函数 (Ⅰ)求的单调区间; (Ⅱ)若,,求的取值范围.
设函数,且为的极值点. (Ⅰ) 若为的极大值点,求的单调区间(用表示); (Ⅱ)若恰有1解,求实数的取值范围.
设正数数列的前项和为,且, (Ⅰ)试求,, (Ⅱ)猜想的通项公式,并用数学归纳法证明
已知抛物线和若有且仅有一条公切线,求出公切线的方程
定义在R上的函数满足对任意实数,总有,且当时,. (1)试求的值; (2)判断的单调性并证明你的结论; (3)设,若,试确定的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号